Extremal A-statistical limit points via ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Extremal I-limit Points of Double Sequences

After F a s t [6] introduced the theory of statistical convergence of a real sequence, it has become popular among mathematicians ([2], [7]–[9], [17]). The ideas of statistical limit superior and limit inferior were first extensively studied by F r i d y and O r h a n [9]. After K o s t y r k o et al. [10] extended the idea of statistical convergence to I-convergence using the concept of an ide...

متن کامل

Specifying a positive threshold function via extremal points

An extremal point of a positive threshold Boolean function f is either a maximal zero or a minimal one. It is known that if f depends on all its variables, then the set of its extremal points completely specifies f within the universe of threshold functions. However, in some cases, f can be specified by a smaller set. The minimum number of points in such a set is the specification number of f ....

متن کامل

On Lacunary Statistical Limit and Cluster Points of Sequences of Fuzzy Numbers

For any lacunary sequence $theta = (k_{r})$, we define the concepts of $S_{theta}-$limit point and $S_{theta}-$cluster point of a sequence of fuzzy numbers $X = (X_{k})$. We introduce the new sets  $Lambda^{F}_{S_{theta}}(X)$, $Gamma^{F}_{S_{theta}}(X)$ and prove some inclusion relaions between these and the sets $Lambda^{F}_{S}(X)$, $Gamma^{F}_{S}(X)$ introduced in ~cite{Ayt:Slpsfn} by Aytar [...

متن کامل

FUZZY IDEALS AND FUZZY LIMIT STRUCTURES

In this paper, we establish the theory of fuzzy ideal convergence on completely distributive lattices and give characterizations of some topological notions. We also study fuzzy limit structures and discuss the relationship between fuzzy co-topologies and fuzzy limit structures.

متن کامل

Computing Ideals of Points

The easiest geometric object in affine or projective space is a single rational point. It has no secrets, in particular its defining ideal, i.e. the set of all the polynomials which vanish at the point, is straightforward to describe. Namely, for an affine point with coordinates (a1, . . . , an), the corresponding ideal is p = (x1 − a1, . . . , xn − an); while for a projective point with coordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Egyptian Mathematical Society

سال: 2014

ISSN: 1110-256X

DOI: 10.1016/j.joems.2013.06.005